207 research outputs found

    Outlining the scaling-based and scaling-free optimization of electrocatalysts

    Get PDF
    Catalysis and Surface Chemistr

    Influence of Van der Waals Interactions on the Solvation Energies of Adsorbates at Pt-Based Electrocatalysts

    Get PDF
    Solvation can significantly modify the adsorption energy of species at surfaces, thereby influencing the performance of electrocatalysts and liquid‐phase catalysts. Thus, it is important to understand adsorbate solvation at the nanoscale. Here we evaluate the effect of van der Waals (vdW) interactions described by different approaches on the solvation energy of *OH adsorbed on near‐surface alloys (NSAs) of Pt. Our results show that the studied functionals can be divided into two groups, each with rather similar average *OH solvation energies: (1) PBE and PW91; and (2) vdW functionals, RPBE, PBE‐D3 and RPBE‐D3. On average, *OH solvation energies are less negative by ∼0.14 eV in group (2) compared to (1), and the values for a given alloy can be extrapolated from one functional to another within the same group. Depending on the desired level of accuracy, these concrete observations and our tabulated values can be used to rapidly incorporate solvation into models for electrocatalysis and liquid‐phase catalysis.Catalysis and Surface Chemistr

    Structural principles to steer the selectivity of the electrocatalytic reduction of aliphatic ketones on platinum

    Get PDF
    Due to a general feedstock shift, the chemical industry is charged with the task of finding ways to transform renewable ketones into value-added products. A viable route to do so is the electrochemical hydrogenation of the carbonyl functional group. Here we report a study on acetone reduction at platinum single-crystal electrodes using online electrochemical mass spectroscopy, in situ Fourier transform infrared spectroscopy and density functional theory calculations. Acetone reduction at platinum displays a remarkable structural sensitivity: not only the activity, but also the product distribution depends on the surface crystallographic orientation. At Pt(111) neither adsorption nor hydrogenation occur. A decomposition reaction that deactivates the electrode happens at Pt(100). Acetone reduction proceeds at the (110) steps: Pt[(n – 1)(111) × (110)] electrodes produce 2-propanol and Pt[(n + 1)(100) × (110)] electrodes produce propane. Using density functional theory calculations, we built a selectivity map to explain the intricacies of the acetone reduction on platinum. Finally, we extend our conclusions to the reduction of higher aliphatic ketones.Catalysis and Surface Chemistr

    Interconversions of nitrogen-containing species on Pt(100) and Pt(111) electrodes in acidic solutions containing nitrate

    Get PDF
    This work deals with the interconversions of various nitrogen-containing compounds on Pt(111) and Pt(100) electrodes in contact with acidic solutions of nitrate. Via its reduction, nitrate acts merely as the source of adsorbed nitrogen-containing intermediates, which then undergo complex oxidative or reductive transformations depending on the electrode potential. Nitrate reduction to ammonium is structure sensitive on Pt(111) and Pt(100) because it is mediated by *NO, the adsorption and reactivity of which is also structure sensitive. Accordingly, previous knowledge from *NO electrochemistry is useful to streamline nitrate reduction and elaborate a comprehensive picture of nitrogen-cycle electrocatalysis. Our overall conclusion for nitrate reduction is that the complete conversion to ammonium under prolonged electrolysis is possible only if the reduction of nitrate to nitric oxide, and the reduction of nitric oxide to ammonium are feasible at the applied potential. Among the two surfaces studied here, this condition is fulfilled by Pt(111) in a narrow potential region. (C) 2018 Elsevier Ltd. All rights reserved.Catalysis and Surface Chemistr
    corecore